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Abstract

In this paper, we propose multimodal convolutional neu-
ral networks (m-CNNs) for matching image and sentence.
Ourm-CNN provides an end-to-end framework with convo-
lutional architectures to exploit image representation, word
composition, and the matching relations between the two
modalities. More specifically, it consists of one image CNN
encoding the image content and one matching CNN mod-
eling the joint representation of image and sentence. The
matching CNN composes different semantic fragments from
words and learns the inter-modal relations between image
and the composed fragments at different levels, thus ful-
ly exploit the matching relations between image and sen-
tence. Experimental results demonstrate that the proposed
m-CNNs can effectively capture the information necessary
for image and sentence matching. More specifically, our
proposed m-CNNs significantly outperform the state-of-
the-art approaches for bidirectional image and sentence re-
trieval on the Flickr8K and Flickr30K datasets.

1. Introduction
Associating image with natural language sentence plays

an essential role in many applications. Describing the im-
age with natural sentences is useful for image annotation
and captioning [8, 21, 26], while retrieving image with a
natural language as query is more natural for image search
[13, 16]. The association between image and sentence can
be formalized as a multimodal matching problem, where
the semantically related image and sentence pairs should be
assigned higher matching scores than unrelated ones.

Multimodal matching between image and sentence
is complicated, and usually occurs at different lev-
els as shown in Figure 1. The words in the sen-
tence, such as “grass”, “dog”, and “ball”, de-
note the objects in the image. The phrases describ-
ing the objects and their attributes or activities, such
as “black and brown dog”, and “small black and

brown dog play with a red ball”, correspond to
the image areas of their grounding meanings. The
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Figure 1. Multimodal matching relations between image and
sentence. The words and phrases, such as “grass”, “a red
ball”, and “small black and brown dog play
with a red ball”, correspond to the image areas of their
grounding meanings. The sentence “small black and
brown dog play with a red ball in the grass”
expresses the meaning of the whole image.

whole sentence “small black and brown dog play

with a red ball in the grass”, expressing a com-
plete meaning, associates with the whole image. These
matching relations should be all taken into consideration for
an accurate multimodal matching between image and sen-
tence. Recently, much research work focuses on modeling
the image and sentence matching relation at the specific lev-
el, namely the word level [31, 32, 6], phrase level [37, 27],
and sentence level [13, 16, 30]. However, to the best of our
knowledge, there are no models to fully exploit the match-
ing relations between image and sentence by considering
the inter-modal correspondences at all the levels together.

The multimodal matching between image and sentence
requires good representations of image and sentence. Re-
cently, deep neural networks have been employed to learn
better image and sentence representations. Specifically,
convolutional neural networks (CNNs) have shown their
powerful abilities on learning of image representation [10,
29, 33, 11] and sentence representation [14, 15, 18]. How-
ever, the ability of CNN on multimodal matching, specif-
ically the image and sentence matching problem, has not
been studied.

In this paper, we propose a novel multimodal convolu-
tional neural network (m-CNN) framework for the image



and sentence matching problem. Trained on a set of image
and sentence pairs, the proposed m-CNNs are able to re-
trieve and rank images given a natural language sentence as
query, and vice versa. Our core contributions are:

1. CNN is first proposed for the image and sentence
matching problem. We employ convolutional architec-
tures to encode the image, compose different semantic
fragments from the words, and learn the matching rela-
tions between the image and the composed fragments.

2. The complicated matching relations between image
and sentence are fully captured in our proposed m-
CNN by letting image and the composed fragments of
the sentence meet and interact at different levels. We
validate the effectiveness of m-CNNs on the bidirec-
tional image and sentence retrieval experiments, and
demonstrate that m-CNNs can achieve performances
superior to the state-of-the-art approaches.

2. Related Work
There is a long thread of work on the association be-

tween image and text. Early work usually focuses on mod-
eling the relation between the image and annotating words
[6, 9, 31, 32, 35] or phrases [27, 37]. These models can-
not effectively capture the complicated matching relations
between image and sentence. Recently, the association be-
tween image and sentence has been studied for bidirectional
image and sentence retrieval [13, 16, 30] and automatic im-
age captioning [3, 5, 17, 19, 20, 23, 24, 34].

For bidirectional image and sentence retrieval, Hodosh et
al. [13] proposed using kernel canonical correlation analy-
sis (KCCA) to discover the shared feature space between
image and sentence. However, the highly non-linear inter-
modal relations cannot be effectively exploited with the
shallow representations of image and sentence. Recently,
researchers seek better representations of image and sen-
tence by using deep architectures. Socher et al. [30] pro-
pose to employ the semantic dependency-tree recursive neu-
ral network (SDT-RNN) to map the sentence and the image
into the same semantic space, and measure their association
by the distance in that space. The global level matching
relations between image and sentence are captured by rep-
resenting the sentence as a global vector. However, they
neglect the local fragments of the sentence and their corre-
spondences to the image. In contrary, Karpathy et al. [16]
work on a finer level by aligning the fragments of sentence
and the regions of image. The local inter-modal correspon-
dences between image and sentence fragments are learned,
while the global matching relations are not considered. As
illustrated in Figure 1, the image content corresponds to dif-
ferent fragments of sentence from local words to the global
sentence. To fully exploit the inter-modal matching rela-
tions, we propose m-CNNs to compose different semantic
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Figure 2. The m-CNN architecture for matching image and sen-
tence. Image representation is generated by the image CNN. The
matching CNN composes different fragments from the words of
the sentence and learns the joint representation of image and sen-
tence fragments. MLP summarizes the joint representation and
produces the matching score.

fragments from the words, let the fragments interact with
the image at different levels, and model their matching re-
lations.

For automatic image captioning, researchers employ re-
current visual representation (RVP) [3], multimodal recur-
rent neural network (m-RNN) [23, 24], multimodal neural
language model (MNLM) [19, 20], neural image caption
(NIC) [34], deep visual-semantic alignments (DVSA) [17],
and long-term recurrent convolution networks (LRCN) [5]
to learn the relations between image and sentence and gen-
erate a caption for a given image. Please note that those
models naturally produce scores for the association between
image and sentence (e.g., the likelihood of a sentence as the
caption for a given image). It can thus be readily used for
the bidirectional image and sentence retrieval.

3. m-CNNs for Matching Image and Sentence
As illustrated in Figure 2, m-CNN takes the image and

sentence as input and generates the matching score between
them. More specifically, m-CNN consists of three compo-
nents.
• Image CNN The image CNN is used to generate the

image representation for matching the fragments com-
posed from words of the sentence, which is computed
as follows:

νim = σ(wim(CNNim(I)) + bim), (1)

where σ(·) is a nonlinear activation function (e.g.,
Sigmoid or ReLU [4]). CNNim is an image CNN
which takes the image as input and generates a fixed
length image representation. The state-of-the-art im-
age CNNs for image recognition, such as [28, 29], can



be used to initialize the image CNN, which returns a
4096-dimensional feature vector from the fully con-
nected layer immediately before the last ReLU layer.
The matrix wim is of dimension d × 4096, where d
is set as 256 in our experiments. Each image is thus
represented as one d-dimension vector νim.

• Matching CNN The matching CNN takes the encod-
ed image representation νim and word representations
νiwd as input and produces the joint representation νJR.
As illustrated in Figure 1, the image content may cor-
respond to the sentence fragments with varying scales,
which will be adequately captured in the learnt joint
representation of image and sentence. Aiming at fully
exploiting the inter-modal matching relations, our pro-
posed matching CNNs first compose different seman-
tic fragments from the words and then learn the inter-
modal structures and interactions between the image
and composed fragments. More specifically, different
matching CNNs are designed to make the image inter-
act with the composed fragments of the sentence at dif-
ferent levels to generate the joint representation, from
the word and phrase level to the sentence level. De-
tailed description of the matching CNNs at different
levels will be introduced in the following subsections.

• MLP Multilayer perceptron (MLP) takes the joint rep-
resentation νJR as input and produces the final match-
ing score between image and sentence, which is calcu-
lated as follows:

smatch = ws

(
σ(wh(νJR) + bh)

)
+ bs, (2)

where σ(·) is a nonlinear activation function. wh and
bh are used to map νJR to the representation in the hid-
den layer. ws and bs are used to compute the matching
score between image and sentence.

The three components of our proposed m-CNN are ful-
ly coupled in the end-to-end image and sentence matching
framework, with all the parameters (e.g., those for image
CNN, matching CNN, MLP, wim and bim in Eq. (1), and
word representations) being jointly learned under the su-
pervision from matching instances. Threefold benefits are
provided. Firstly, the image CNN can be tuned to gener-
ate a better image representation for matching. Secondly,
word representations can be tuned for further composition
and matching processes. Thirdly, the matching CNN (as de-
tailed in the following) composes different fragments from
word representations and lets the image representation in-
teract with the fragments at different levels, which can fully
exploit the inter-modal matching correspondences between
image and sentence. With the nonlinear projection in Eq.
(1), the image representations νim for different matching
CNNs are expected to encode the image content for match-
ing the composed semantic fragments of the sentence.
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Figure 3. The word-level matching CNN. (a) The word-level
matching CNN architecture. (b) The convolution unit of multi-
modal convolution layer of MatchCNNwd. The dashed lines indi-
cate the zero padded word and image representations, which are
gated out during the convolution process.

3.1. Different Variants of Matching CNN

To fully exploit the matching relations between image
and sentence, we let the image representation meet and in-
teract with different composed fragments of the sentence
(roughly the word, phrase, and sentence) to generate the
joint representation.

3.1.1 Word-level Matching CNN

In order to find the word-level matching relations, we let the
image interact with the word-level fragments of sentence
and learn their interactions. Moreover, as most convolu-
tional models [1, 14, 22], we consider the convolution unit
with a local “receptive field” and shared weights to ade-
quately model the rich structures for word composition and
inter-modal interaction. The word-level matching CNN, de-
noted as MatchCNNwd, is designed as in Figure 3 (a). After
sequential layers of convolution and pooling, the joint rep-
resentation of image and sentence is generated as the input
of MLP to produce the matching score.

Convolution Generally, with a sequential input ν, the
convolution unit for feature map of type-f (among F` of
them) on the `th layer is

νi(`,f)
def
= σ(w(`,f)~ν

i
(`−1) + b(`,f)), (3)

where w(`,f) are the parameters for the f feature map on
`th layer, σ(·) is the activation function, and ~νi(`−1) denotes
the segment of (`−1)th layer for the convolution at location
i , which is defined as follows:

~νi(`−1)
def
= νi(`−1) ‖ ν

i+1
(`−1) ‖ · · · ‖ ν

i+krp−1

(`−1) . (4)

krp defines the size of local “receptive field” for convolu-
tion. “‖” concatenates the neighboring krp word vectors
into a long vector. In this paper, krp is chosen as 3 for the
convolution process.

As MatchCNNwd aims at exploring word-level matching
relations, the multimodal convolution layer is introduced by
letting the image interact with the word-level fragments of



sentence. The convolution unit of the multimodal convo-
lution layer is illustrated in Figure 3 (b). The input of the
multimodal convolution unit is denoted as:

~νi(0)
def
= νiwd ‖ νi+1

wd ‖ · · · ‖ ν
i+krp−1
wd ‖ νim, (5)

where νiwd is the vector representation of word i in the sen-
tence, and νim is the encoded image feature for match-
ing word-level fragments of sentence. It is not hard to
see that the first convolution layer with this input makes
the “interaction” between word and image representations,
yielding the local matching signal at word level. From
the sentence perspective, the multimodal convolution on
~νi(0) composes a higher semantic representation from the

words νiwd, · · · , ν
i+krp−1
wd in local “receptive field”, such

as the phrase “a white ball”. From the matching per-
spective, the multimodal convolution on ~νi(0) captures the
inter-modal correspondence between image representation
and the word-level fragments of sentence. The meanings
of the word “ball” and the composed phrase “a white

ball” are grounded in the image.
Moreover, in order to handle natural sentences of vari-

able lengthes, the maximum length of sentence is fixed for
MatchCNNwd. Zero vectors are padded for the image and
word representations, represented as the dashed lines in Fig-
ure 3 (a). The output of the convolution process on zero
vectors is gated to be zero. The convolution process in Eq.
(3) is further formulated as:

νi(`,f) = g(~νi(`−1)) · σ(w(`,f)~ν
i
(`−1) + b(`,f))

where, g(x) =

{
0, x == 0
1, otherwise

. (6)

The gating function can eliminate the unexpected matching
noises composed from the convolution process.

Max-pooling After each convolution layer, a max-
pooling layer is followed. Taking a two-unit window max-
pooling as an example, the pooled feature is obtained by:

νi(`+1,f) = max(ν2i(`,f), ν
2i+1
(`,f) ). (7)

The effects of max-pooling are two-fold. 1) With the stride
as two, the max-pooling process lowers the dimensionali-
ty of the representation by half, thus making it possible to
quickly generate the final joint representation of the image
and sentence. 2) It helps filter out the undesired interactions
between image and fragments of sentence. Taking the sen-
tence in Figure 3 (a) as an example, the composed phrase
“dog chase a” matches better to the image than “chase
a white”. Therefore, we can imagine that a well-trained
multimodal convolution unit will generate a better matching
representation of “dog chase a” and image. The max-
pooling process will pool the matching representation out
for further convolution and pooling processes.
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Figure 4. The phrase-level matching CNN and composed phrases.
(a) The short phrase is composed by one layer of convolution and
pooling. (b) The long phrase is composed by two sequential layers
of convolution and pooling. (c) The phase-level matching CNN
architecture.

The convolution and pooling processes summarize the
local matching signals explored at the word level. More
layers of convolution and pooling can be further employed
to conduct matching decisions at higher levels and final-
ly reach a global joint representation. Specifically, in this
paper another two more layers of convolution and max-
pooling are employed to capture the inter-modal correspon-
dences between image and word-level fragments of the sen-
tence.

3.1.2 Phrase-level Matching CNN

Different from the word-level matching CNN, we let CNN
work solely on words to certain levels before interacting
with the image. Without seeing the image feature, the
convolution process composes higher semantic represen-
tations from the words in the “receptive field”, while the
max-pooling process filters out the undesired compositions.
These composed representations are roughly correspond to
phrases from the language perspective. We let the image in-
teract with the composed phrases to reason their inter-modal
matching relations.

As illustrated in Figure 4 (a), after one layer of con-
volution and max-pooling, short phrases (denoted as νi(2))
are composed from four words, such as “a woman in

jean”. These composed short phrases offer richer and more
detailed descriptions about the objects and their relation-
ships in the image, compared with single words, such as
“woman” and “jean”. With an additional layer of convo-
lution and max-pooling on short phrases, long phrases (de-
noted as νi(4)) are composed from four short phrases (al-
so from ten words), such as “a black dog be in the
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Figure 5. The sentence-level matching CNN. The joint represen-
tation is obtained by concatenating the image and sentence repre-
sentations together.

grass with a woman” in Figure 4 (b). Compared with
the short phrases and single words, the long phrases present
even richer and much more detailed descriptions about the
objects, their activities, and their relative positions.

In order to reason the inter-modal relations between im-
age and the composed phrases, a multimodal convolution
layer is introduced by performing the convolution on the
image and phrase representations. The input of the multi-
modal convolution unit is

~νiph
def
= νiph ‖ νi+1

ph ‖ · · · ‖ ν
i+krp−1
ph ‖ νim, (8)

where νiph is the composed phrase representation, which
can be either short phrases νi(2) or long phrases νi(4). The
multimodal convolution process produces the phrase-level
matching decisions. Then the layers after that (namely the
max-pooling and convolution layers) can be viewed as fur-
ther fusion of these local phrase-level matching decisions to
the joint representation, which captures the local matching
relations between image and composed phrase fragments.
Specifically, for short phrases, two sequential layers of con-
volution and pooling are followed to generate the joint rep-
resentation. We name the matching CNN for short phras-
es and image as MatchCNNphs. For long phrases, only
one sequential layer of convolution and pooling is used to
summarize the local matching to the joint representation.
The matching CNN for long phrases and image is named as
MatchCNNphl.

3.1.3 Sentence-level Matching CNN

The sentence-level matching CNN, denoted as
MatchCNNst, goes one step further in the composi-
tion and defers the matching until the sentence is fully
represented, as illustrated in Figure 5. More specifically,
one image CNN encodes the image into a feature vector.
One sentence CNN, consisting of three sequential layers
of convolution and pooling, represents the whole sentence
as a feature vector. The multimodal layer concatenates the
image and sentence representations together as their joint
representation

νJR = νim ‖ νst, (9)

Table 1. Configurations of MatchCNNwd, MatchCNNphs,
MatchCNNphl, and MatchCNNst in each column. (conv denotes
the convolution layer; multi-conv denotes the multimodal convo-
lution layer; max denotes the max pooling layer.)

MatchCNNwd MatchCNNphs MatchCNNphl MatchCNNst

+ νim
multi-conv-200 conv-200 conv-200 conv-200

max-2 max-2 max-2 max-2
+ νim

conv-300 multi-conv-300 conv-300 conv-300
max-2 max-2 max-2 max-2

+ νim
conv-300 conv-300 multi-conv-300 conv-300

max-2 max-2 max-2 max-2
+ νim

where νst denotes the sentence representation by vectoriz-
ing the features in the last layer of the sentence CNN.

For the sentence “a little boy in a bright

green field have kick a soccer ball very

high in the air” illustrated in Figure 5, although
word-level and phrase-level fragments, such as “boy”,
“kick a soccer ball”, correspond to the objects as
well as their activities in the image, the whole sentence
needs to be fully represented to make an accurate asso-
ciation with the image. The sentence CNN with layers
of convolution and pooling is used to encode the whole
sentence as a feature vector representing its semantic mean-
ing. Concatenating the image and sentence representation
together, MatchCNNst does not conduct matching, but
transfer the representations of the two modalities to the
later MLP for fusing and matching.

3.2. m-CNNs with Different Matching CNNs

We can get different m-CNNs with different variants
of Matching CNNs, namely m-CNNwd, m-CNNphs, m-
CNNphl, and m-CNNst. To fully exploit the inter-modal
matching relations between image and sentence at different
levels, we use an ensemble m-CNNENS of the four vari-
ants by summing the matching scores generated from the
four m-CNNs together.

4. Implementation Details
In this section, we describe the detailed configurations

of our proposed m-CNN models and how we train the pro-
posed networks.

4.1. Configurations

We use two different image CNNs, OverFeat [28] (the
“fast” network) and VGG [29] (with 19 weight layers), with
which we take not only the architectures but also the origi-
nal parameters (learnt on the ImageNet dataset) for initial-
ization. By chopping the softmax layer and last ReLU layer,



Table 2. Bidirectional image and sentence retrieval results on Flickr8K.
Sentence Retrieval Image Retrieval

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r
Random Ranking 0.1 0.6 1.1 631 0.1 0.5 1.0 500

DeViSE [6] 4.8 16.5 27.3 28.0 5.9 20.1 29.6 29
SDT-RNN [30] 6.0 22.7 34.0 23.0 6.6 21.6 31.7 25

MNLM [20] 13.5 36.2 45.7 13 10.4 31.0 43.7 14
MNLM-VGG [20] 18.0 40.9 55.0 8 12.5 37.0 51.5 10
m-RNN [24] 14.5 37.2 48.5 11 11.5 31.0 42.4 15

Deep Fragment [16] 12.6 32.9 44.0 14 9.7 29.6 42.5 15
RVP (T) [3] 11.6 33.8 47.3 11.5 11.4 31.8 45.8 12.5

RVP (T+I) [3] 11.7 34.8 48.6 11.2 11.4 32.0 46.2 11
DVSA (DepTree) [17] 14.8 37.9 50.0 9.4 11.6 31.4 43.8 13.2
DVSA (BRNN) [17] 16.5 40.6 54.2 7.6 11.8 32.1 44.7 12.4

NIC [34] 20.0 * 61.0 6 19.0 * 64.0 5
OverFeat [28]:
m-CNNwd 8.6 26.8 38.8 18.5 8.1 24.7 36.1 20
m-CNNphs 10.5 29.4 41.7 15 9.3 27.9 39.6 17
m-CNNphl 10.7 26.5 38.7 18 8.1 26.6 37.8 18
m-CNNst 10.6 32.5 43.6 14 8.5 27.0 39.1 18
m-CNNENS 14.9 35.9 49.0 11 11.8 34.5 48.0 11

VGG [29]:
m-CNNwd 15.6 40.1 55.7 8 14.5 38.2 52.6 9
m-CNNphs 18.0 43.5 57.2 8 14.6 39.5 53.8 9
m-CNNphl 16.7 43.0 56.7 7 14.4 38.6 52.2 9
m-CNNst 18.1 44.1 57.9 7 14.6 38.5 53.5 9
m-CNNENS 24.8 53.7 67.1 5 20.3 47.6 61.7 5

the output of the last fully-connected layer is deemed as the
image representation, denoted as CNNim(I) in Eq. (1).

The configurations of MatchCNNwd, MatchCNNphs,
MatchCNNphl, and MatchCNNst are outlined in Table 1.
We use three convolution layers, three max pooling layers,
and an MLP with two fully connected layers for all these
four convolutional networks. The first convolution layer of
MatchCNNwd, second convolution layer of MatchCNNphs,
and third convolution layer of MatchCNNphl are the multi-
modal convolution layers, which blend the image represen-
tation and fragments of the sentence together to compose
a higher level semantic representation. The MatchCNNst
concatenates the image and sentence representations togeth-
er and leaves the interactions to the final MLP. The match-
ing CNNs are designed on fixed architectures, which need
to be set to accommodate the maximum length of the input
sentences. During our experiments, the maximum length is
set as 30. The word representations are initialized by the
skip-gram model [25] with the dimension as 50. The joint
representation obtained from the matching CNN is fed into
the MLP with one hidden layer with the size as 400.

4.2. Learning

The m-CNNs can be trained with contrastive sampling
using a ranking loss function. More specifically, for the
score function smatch(·) as in Eq. (2), the objective function
is defined as:

eθ(xn, yn, ym) =

max
(
0, µ−smatch(xn, yn)+smatch(xn, ym)

) (10)

where θ denotes the parameters, (xn, yn) denotes the relat-
ed image-sentence pair, and (xn, ym) is the randomly sam-
pled unrelated image-sentence pair with n 6= m. The mean-
ings of x and y vary depending on the matching task. For
image retrieval from sentence, x denotes the natural lan-
guage sentence and y denotes the image; for sentence re-
trieval from image, it is just the opposite. The objective is
to force the matching score of the related pair (xn, yn) to
be greater than the unrelated pair (xn, ym) by a margin µ,
which is simply set as 0.5 during the training process.

We use the stochastic gradient descent (SGD) with mini-
batches of 100∼150 for optimization. In order to avoid
overfitting, early-stopping [2] and dropout (with probability
0.1) [12] are used. ReLU is used as the activation function
throughout the m-CNNs.

5. Experiments
In this section, we evaluate the effectiveness of our m-

CNNs on bidirectional image and sentence retrieval. We
begin by describing the datasets used for evaluation, fol-
lowed by a brief description of competitor models. As our
m-CNNs are bidirectional, we evaluate the performances
on both image retrieval and sentence retrieval.

5.1. Datasets

We test our matching models on the public image-
sentence datasets, with varying sizes and characteristics.

Flickr8K [13] This dataset consists of 8,000 images col-



Table 3. Bidirectional image and sentence retrieval results on Flickr30K.
Sentence Retrieval Image Retrieval

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r
Random Ranking 0.1 0.6 1.1 631 0.1 0.5 1.0 500

DeViSE [6] 4.5 18.1 29.2 26 6.7 21.9 32.7 25
SDT-RNN [30] 9.6 29.8 41.1 16 8.9 29.8 41.1 16

MNLM [20] 14.8 39.2 50.9 10 11.8 34.0 46.3 13
MNLM-VGG [20] 23.0 50.7 62.9 5 16.8 42.0 56.5 8
m-RNN [24] 18.4 40.2 50.9 10 12.6 31.2 41.5 16

m-RNN-VGG [23] 35.4 63.8 73.7 3 22.8 50.7 63.1 5
Deep Fragment [16] 14.2 37.7 51.3 10 10.2 30.8 44.2 14

RVP (T) [3] 11.9 25.0 47.7 12 12.8 32.9 44.5 13
RVP (T+I) [3] 12.1 27.8 47.8 11 12.7 33.1 44.9 12.5

DVSA (DepTree) [17] 20.0 46.6 59.4 5.4 15.0 36.5 48.2 10.4
DVSA (BRNN) [17] 22.2 48.2 61.4 4.8 15.2 37.7 50.5 9.2

NIC [34] 17.0 * 56.0 7 17.0 * 57.0 7
LRCN [5] * * * * 17.5 40.3 50.8 9

OverFeat [28]:
m-CNNwd 12.7 30.2 44.5 14 11.6 32.1 44.2 14
m-CNNphs 14.4 38.6 49.6 11 12.4 33.3 44.7 14
m-CNNphl 13.8 38.1 48.5 11.5 11.6 32.7 44.1 14
m-CNNst 14.8 37.9 49.8 11 12.5 32.8 44.2 14
m-CNNENS 20.1 44.2 56.3 8 15.9 40.3 51.9 9.5

VGG [29]:
m-CNNwd 21.3 53.2 66.1 5 18.2 47.2 60.9 6
m-CNNphs 25.0 54.8 66.8 4.5 19.7 48.2 62.2 6
m-CNNphl 23.9 54.2 66.0 5 19.4 49.3 62.4 6
m-CNNst 27.0 56.4 70.1 4 19.7 48.4 62.3 6
m-CNNENS 33.6 64.1 74.9 3 26.2 56.3 69.6 4

lected from Flickr. Each image is accompanied with 5 sen-
tences describing the image content. This dataset provides
the standard training, validation, and testing split.

Flickr30K [36] This dataset consists of 31,783 images col-
lected from Flickr. Each image is also accompanied with 5
sentences describing the content of the image. Most of the
images depict varying human activities. We use the public
split in [24] for training, validation, and testing.

5.2. Competitor Models

We compare our models with recently developed models
on the performances of the bidirectional image and sentence
retrieval, specifically DeViSE [6], SDT-RNN [30], Deep
Fragment [16], m-RNN [23, 24], MNLM [20], RVP [3],
DVSA [17], NIC [34], and LRCN [5]. DeViSE, Deep Frag-
ment, and SDT-RNN are regarded as working on the word-
level, phrase-level, and sentence-level respectively, which
all embed the image and sentence into the same semantic
space. The other models, namely MNLM, m-RNN, RVP,
DVSA, NIC, and LRCN, which are originally proposed for
automatic image captioning, can also be used for retrieval
in both directions.

5.3. Experimental Results and Analysis

5.3.1 Bidirectional Image and Sentence Retrieval

We adopt the evaluation metrics [16] for comparison. More
specifically, for bidirectional retrieval, we report the median

rank (Med r ) of the closest ground truth result in the list, as
well as the R@K (with K = 1, 5, 10) which computes the
fraction of times the correct result is found among the top
K results. The performances of the proposed m-CNNs for
bidirectional image and sentence retrieval on Flickr8K and
Flickr30K are provided in Table 2 and 3, respectively. We
highlight the best performance of each evaluation metric. In
most cases, m-CNNENS (with VGG) outperforms all the
competitor models.

On Flickr8K, only NIC slightly outperforms m-
CNNENS (with VGG) on the image retrieval task in terms
of R@10. One possible reason is that NIC uses a better im-
age CNN [33], compared with VGG. As discussed in Sec-
tion 5.3.3, the performance of image CNN greatly affects
the performance of the bidirectional image and sentence re-
trieval. Another possible reason is the lack of training sam-
ples. Flickr8K consists of only 8,000 images, which are
insufficient for adequately tuning the parameters of the con-
volutional architectures in m-CNNs.

On Flickr30K, with more training instances (30,000 im-
ages), the best performing competitor model becomes m-
RNN-VGG on both tasks, while NIC only achieves moder-
ate retrieval accuracies. Only m-RNN-VGG outperforms
m-CNNENS (with VGG) on the sentence retrieval task
in terms of R@1. When it comes to image retrieval, m-
CNNENS (with VGG) is consistently better than m-RNN-
VGG. One possible reason may be that m-RNN-VGG is



Table 4. The matching scores of the image and sentence. The natural language sentence (in bold) is the true caption of the image, while the
other three sentences are generated by random reshuffle of words.

image sentence m-CNNwd m-CNNphs m-CNNphl m-CNNst

three person sit at an outdoor table in front -0.87 1.91 -1.84 2.93
of a building paint like the union jack .

like union at in sit three jack the person a -1.49 1.66 -3.00 2.37
paint building table outdoor of front an .
sit union a jack three like in of paint the -2.44 1.55 -3.90 2.53
person table outdoor building front at an .
table sit three paint at a building of like -1.93 1.64 -3.81 2.52
the an person front outdoor jack union in .

designed for the caption generation and is particularly good
at finding the suitable sentence for a given image.

5.3.2 Performances of Different m-CNNs

The proposed m-CNNwd and DeViSE [6] both aim at ex-
ploiting word-level inter-modal correspondences between
the image and sentence. However, DeViSE treats each word
equally and averages their word vectors as the representa-
tion of the sentence, while our m-CNNwd lets image inter-
act with each word to compose higher semantic representa-
tions, which significantly outperforms DeViSE. On the oth-
er end, both SDT-RNN [30] and the proposed m-CNNst
exploit the matching relations between the image and sen-
tence at the sentence level. However, SDT-RNN encodes
each sentence recursively into a feature vector based on a
pre-defined dependency tree, while m-CNNst works on a
more flexible manner with a sliding window on the sentence
to finally generate the sentence representation. Therefore, a
better performance is obtained by m-CNNst.

Deep Fragment [16] and the proposed m-CNNphs and
m-CNNphl match the image and sentence fragments at the
phrase level. However, Deep Fragment uses the edges of
the dependency tree to model the sentence fragments, mak-
ing it impossible to describe more complex relations within
the sentence. For example, Deep Fragment parses a relative
complex phrase “black and brown dog” to two rela-
tions “(CONJ, black, brown)” and “(AMOD, brown,

dog)”, while m-CNNphs handles the same phrase as a
whole to compose a higher semantic representation. More-
over, m-CNNphl can readily handle longer phrases and rea-
son their grounding meanings in the image. Consequent-
ly, better performances ofm-CNNphs andm-CNNphl (with
VGG) are obtained compared with Deep Fragment.

Moreover, it can be observed thatm-CNNst consistently
outperforms the other m-CNNs. In m-CNNst, the sentence
CNN can effectively summarize the sentence and make a
better sentence-level association with image. The other m-
CNNs can capture the matching relations at the word and
phrase levels. The matching relations should be considered
together to fully depict the inter-modal correspondences be-
tween the image and sentence. Thus m-CNNENS achieves
the best performances, which indicates that m-CNNs at dif-
ferent levels are complementary to each other to capture the
complicated image and sentence matching relations.

5.3.3 Influence of Image CNN

We use OverFeat and VGG to initialize the image CNN in
m-CNN for the retrieval tasks. It can be observed that m-
CNNs with VGG significantly outperform that with Over-
Feat by a large margin, which is consistent with their perfor-
mance on image classification on ImageNet (14% and 7%
top-5 classification errors for OverFeat and VGG, respec-
tively). Clearly the retrieval performance depends heav-
ily on the efficacy of the image CNN, which might ex-
plain the good performance of NIC on Flickr8K. Moreover,
the so-called region with CNN features in [7] can be used
to encode image regions, which are adopted as the image
fragments in Deep Fragment and DVSA. In the future, we
will consider to incorporate these image CNNs into our m-
CNNs to make more accurate inter-modal matching.

5.3.4 Composition Abilities of m-CNNs

m-CNNs can compose different semantic fragments from
words of the sentence for the inter-modal matching at differ-
ent levels, and therefore possess the ability of word compo-
sition. More specifically, we want to check whether the m-
CNNs can compose reliable semantic fragments from words
of random orders for matching the image. As demonstrat-
ed in Table 4, the matching scores between an image and
its accompanied sentence (from different m-CNNs) great-
ly drop after the random reshuffle of words. It is a fairly
strong evidence that m-CNNs will compose highly seman-
tic representations from words of natural language sentence
and thus make the inter-modal matching relations between
image and sentence.

6. Conclusion
We have proposed multimodal convolutional neural net-

works (m-CNNs) for matching image and sentence. The
proposed m-CNNs rely on convolutional architectures to
compose different semantic fragments of the sentence and
learn the interactions between image and the composed
fragments at different levels, and therefore can fully exploit
the inter-modal matching relations. Experimental results on
bidirectional image and sentence retrieval tasks demonstrate
the consistent improvements of m-CNNs over the state-of-
the-art approaches.
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